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Underdetermined Linear Systems and
Sparse Approximation

y︷ ︸︸ ︷
y1
y2
...

yd

 =

D︷ ︸︸ ︷
d1,1 d1,k d1,N
d2,1 d2,k d2,N

... . . .
... . . .

...
dd ,1 dd ,k dd ,N



x︷ ︸︸ ︷

x1
x2
...

xk
...

xN


+

ν︷ ︸︸ ︷
ν1
ν2
...
νd



Noisy sparse approximation: minx ||x||0 s.t . ||y− Dx||2 < ε

Convex sparse approximation:
minx ||x||1 s.t . ||y− Dx||2 < ε

Unconstrained convex sparse approximation:
minx ||y− Dx||2 + λ||x||1

3 / 18



Dictionary Learning for Sparse Approximation

Dictionary learning:
Finding a dictionary such that sparse approximations of the
training samples are sparser (with the same representation
error) or have less representation error (with the same
sparsity) or both.
Methods are mostly based on block relaxation: iterate
between sparse approximation of the learning blocks and
the dictionary updates.

min{D∈D ,X}Φ(D,X) ; Φ(D,X) = ||Y− DX||2F + λJ0,0(X)

X = [x(1) x(2) . . . x(L)]
Y = [y(1) y(2) . . . y(L)]

||A||F = (
∑

i
∑

j (ai,j)
2)

1
2

D admissible dictionary set
J0,0(X) = #{xi,j 6= 0}
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Dictionary Learning: Admissible Sets

Two important classes of dictionaries are:
Dictionaries with constrained Frobenius-norm,

D = {Dd×N : ||D||F ≤ c1/2
F }

Dictionaries with constrained Column-norm,

D = {Dd×N : ||di ||2 ≤ c1/2
C },

The dictionary learning algorithm turns to the following
optimization problem,

min{D∈D ,X}Φ(D,X) ; Φ(D,X) = ||Y− DX||2F + λJ1,1(X)
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Majorization Method

Majorize minimization method: replacing the original objective
functions with surrogate majorizing objective functions.

Original objective function

min
ω∈Ω

φ(ω)

c ≤ φ(ω)

Majorizing objective function

φ(ω) ≤ ψ(ω, ξ) ∀ω, ξ ∈ Ω

φ(ω) = ψ(ω, ω) ∀ω ∈ Ω

Two-step optimization

1- ωnew = arg minω∈Ω ψ(ω, ξ), fixed ξ
2- ξnew = ω = arg minξ∈Ω ψ(ω, ξ), fixed ω
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Sparse Matrix Approximation with the Majorization
Method (Iterative Thresholding)

Unconstrained convex objective function,

min
X

Φ(X) ; Φ(X) = ||Y− DX||2F + λJ1,1(X)

The majorizing function is made by adding a convex
function ΘD(X,X[n]) to Φ(X).

Ψ(X,X[n]) = Φ(X) + ΘD(X,X[n])

ΘD(X,X[n]) = cx ||X− X[n]||2F − ||DX− DX[n]||2F

Optimization based on X: X[n+1] = minX Ψ(X,X[n])

{X[n+1]}i,j =

{
ai,j − λ/2 sign(ai,j ) |ai,j | > λ/2
0 otherwise

,

A := 1
cX

(DT Y + (cX I− DT D)X[n])

Updating the current coefficient matrix: X[n+1] → X[n]
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Dictionary Learning: Constrained Frobenius-Norm

By using the Lagrangian multiplier method we get a cost
function as follows,

Φγ(D,X) = ||Y− DX||2F + λJ1,1(X) + γ(||D||2F − cF )

It is a convex function and its minimum is in a point with
zero gradient.

D = YXT (XXT + γI)−1

An appropriate γ ≥ 0 should be selected such that D is
admissible. If D|γ=0 is not admissible then it can be found
by a line-search method.
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Dictionary Learning: Constrained Column-Norm

The cost function for this admissible set is,

ΦG(D,X) = ||Y− DX||2F + λJ1,1(X) + tr{G(DT D− cCI)},

where G is a diagonal matrix with the Lagrangian
multipliers on its main diagonal.
The majorizing function is made by adding a convex
function to ΦG(D,X).

ΨG(D,D[n]) = ΦG(D,X) + ΘD(D,D[n])

ΘD(D,D[n]) = cD||D− D[n]||2F − ||DX− D[n]X||2F

Optimization based on D: D[n+1] = minD ΨG(D,D[n])

{D[n]}j =

{
bj ||bj ||2 ≤ c1/2

C

c1/2
C
||bj ||2 bj otherwise

, B := 1
cD

(YXT + D[n](cDI− XXT ))

Updating the current dictionary: D[n+1] → D[n]
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Simulations: Synthetic data

Synthetic data was generated to test the ability of the
algorithms to recover the dictionary exactly.

Random D20X40 were generated, followed by normalization
of the dictionary to have fixed column or Frobenius-norm.
A set of 1280 uniformly random coefficient vectors was
generated where the absolute values of the non-zero
coefficients were between 0.2 and 1, followed by dividing by
the norm of the corresponding atom (for the fixed
Frobenius-norm dictionaries).
The locations of the non-zero values in the coefficient
vectors were selected uniformly at random.
An atom was called “recovered“ when the inner-product
between (Normalized) original atom and (Normalized)
recovered atom was more than 0.99 .
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Atom recovery

Starting from random dictionaries
1000 iterations of alternating minimizations
Majorization method was used for the sparse
approximation followed by debiasing of the coefficient
matrices.
Results of the average percentages and standard
deviations of the atom recovery of 5 trials are shown.
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Atom recovery: computation costs

Simulations ran on the Intel Xeon 2.6 GHz dual core
processor machines.
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Sparse coding of audio signals

Audio signals have been shown to have some sparse
structures, which consist of sinusoids, transients and a
noisy residual component.
In this simulation audio samples were selected randomly
from more than 8 hours recorded from BBC radio 3.
The recorded 48kHz audio was down-sampled by a factor
of 4.
The window length of 256 was selected for all the
simulations.
Dictionary learning algorithms were started with a 2 times
overcomplete dictionary as the initial point.
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Constrained column and Frobenius-norm dictionary
learning comparison
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Audio dictionary learning

Random initialized dictionary.
Bounded Frobenius-norm dictionary admissible set
100,000 iterations of alternative updates.
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Number of appearances of the learned atoms in the
sparse approximations
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Entropy coding estimation for coding with the shrunk
learned dictionary and DCT

Starting with 2 times
overcomplete DCT
Ran for 250 iterations of
alternative optimizations.
Different λ were used to
find optimal dictionaries for
different bitrates
Convex hull of the R-D
curves has been plotted.
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Conclusions

New algorithms were presented for dictionary learning,
using two norm constraints, which are fast and their
performance are as good as currently available methods.
The new algorithms can not only apply typically used
constraints on the dictionaries, but are also flexible enough
to use the corresponding convex relaxed admissible sets.
In a recent work, we could show that the majorization
method for the optimization of the joint objective function
converges to a fixed point or gets as close as possible to a
connected set of fixed points.
Using a constraint on the Frobenius-norm of the dictionary,
jointly with an `1 sparsity measure, was found to be a
better choice.
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