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Underdetermined Linear Systems and

Sparse Approximation
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@ Noisy sparse approximation: min ||x||o s.t. ||y — Dx||? < ¢
@ Convex sparse approximation:

miny ||X|[1 s.t. ||y — Dx||? < ¢
@ Unconstrained convex sparse approximation:

miny ||y — D[ + A[|x| s




Dictionary Learning for Sparse Approximation

@ Dictionary learning:
Finding a dictionary such that sparse approximations of the
training samples are sparser (with the same representation
error) or have less representation error (with the same
sparsity) or both.

@ Methods are mostly based on block relaxation: iterate
between sparse approximation of the learning blocks and
the dictionary updates.

mingpcs x3®(D,X) ; (D, X) = [|Y — DX|[Z + Ao o(X)
X =[x x®. . . x"] 2 admissible dictionary set
Y=[yVy®. . yV] Joo(X) = #{x;; # 0}
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Dictionary Learning: Admissible Sets

@ Two important classes of dictionaries are:
e Dictionaries with constrained Frobenius-norm,

2 = {Dgxn : ||D||F < ¢/*}
@ Dictionaries with constrained Column-norm,
2 = {Dgxn : [|dil|2 < c/*},

@ The dictionary learning algorithm turns to the following
optimization problem,

minpes xy®(D, X) ; ®(D,X) = ||Y — DX||% + Ay 1(X)



Majorization Method

Majorize minimization method: replacing the original objective
functions with surrogate majorizing objective functions.

Original objective function Majorizing objective function

) H(w) < P(w,€) Vuw,E€Q

¢ < ¢(w) $(w) = P(w,w) YweQ

Two-step optimization

1- Whew = Argmingcq ¥(w, §), fixed &
2- £pow = w = Arg Mingeq ¥(w, &), fixed w




Sparse Matrix Approximation with the Majorization

Method (lterative Thresholding)

@ Unconstrained convex objective function,

min®(X) ; ¢(X) =Y - DX|[Z + Ads 1(X)

@ The majorizing function is made by adding a convex
function ©p (X, X[) to d(X).
W(X, XI) = o(X) + ep(X, X")

Op(X, XI") = ¢,/ — XV||2 — |[DX — DXV

o Optimization based on X: X" = miny w(X, X[")

(xin+1y, = J 8~ A/2 sign(aij) |aij| > A/2
Y70 otherwise
A:= 1(D'Y + (cd — D'D)X")

e Updating the current coefficient matrix: X" — X!




Dictionary Learning: Constrained Frobenius-Norm

@ By using the Lagrangian multiplier method we get a cost
function as follows,

®,(D,X) = |[Y — DX|[Z + AJy 1(X) + 7(|ID]Z - cr)

@ ltis a convex function and its minimum is in a point with
zero gradient.
D = YX"(XX" +~1)~"

@ An appropriate v > 0 should be selected such that D is
admissible. If D|,—q is not admissible then it can be found
by a line-search method.



Dictionary Learning: Constrained Column-Norm

@ The cost function for this admissible set is,
®G(D, X) = [[Y — DX|[2 + AJy 1(X) + tr{G(D'D — cdl)},

where G is a diagonal matrix with the Lagrangian
multipliers on its main diagonal.

@ The majorizing function is made by adding a convex
function to g (D, X).

Vg (D, D) = &g (D, X) + ©,(D, D)
(D, D") = cp||D — D2 — ||DX — DX 2

e Optimization based on D: D"*"! = minp Wg(D, D)
1/2

(Do}, — b Ibllese™ o X s D XX
" gy otherwise T >

e Updating the current dictionary: D"*"! — DI




Simulations: Synthetic data

@ Synthetic data was generated to test the ability of the
algorithms to recover the dictionary exactly.
e Random Dypx49 were generated, followed by normalization
of the dictionary to have fixed column or Frobenius-norm.
o A set of 1280 uniformly random coefficient vectors was
generated where the absolute values of the non-zero
coefficients were between 0.2 and 1, followed by dividing by
the norm of the corresponding atom (for the fixed
Frobenius-norm dictionaries).
e The locations of the non-zero values in the coefficient
vectors were selected uniformly at random.
e An atom was called “recovered” when the inner-product
between (Normalized) original atom and (Normalized)
recovered atom was more than 0.99 .
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Atom recovery

@ Starting from random dictionaries

@ 1000 iterations of alternating minimizations

@ Majorization method was used for the sparse
approximation followed by debiasing of the coefficient
matrices.

@ Results of the average percentages and standard
deviations of the atom recovery of 5 trials are shown.
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Execution time in second

@ Simulations ran on the Intel Xeon 2.6 GHz dual core
processor machines.

Constrained column-norm dictionaries

Constrained Frobenius-norm dictionaries
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Sparse coding of audio signals

@ Audio signals have been shown to have some sparse
structures, which consist of sinusoids, transients and a
noisy residual component.

@ In this simulation audio samples were selected randomly
from more than 8 hours recorded from BBC radio 3.

@ The recorded 48kHz audio was down-sampled by a factor
of 4.

@ The window length of 256 was selected for all the
simulations.

@ Dictionary learning algorithms were started with a 2 times
overcomplete dictionary as the initial point.
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Constrained column and Frobenius-norm dictionary

learning comparison

I1 cost functions (approximation error + A * |1 sparsity measure)
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Audio dictionary learning

@ Random initialized dictionary.
@ Bounded Frobenius-norm dictionary admissible set
@ 100,000 iterations of alternative updates.
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Number of appearances of the learned atoms in the

sparse approximations
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Entropy coding estimation for coding with the shrunk

learned dictionary and DCT

@ Starting with 2 times
overcomplete DCT *

@ Ran for 250 iterations of
alternative optimizations.

@ Different \ were used to
find optimal dictionaries for
different bitrates g

e Convex hull of the R-D I
curves has been plotted. '
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Conclusions

@ New algorithms were presented for dictionary learning,
using two norm constraints, which are fast and their
performance are as good as currently available methods.

@ The new algorithms can not only apply typically used
constraints on the dictionaries, but are also flexible enough
to use the corresponding convex relaxed admissible sets.

@ In a recent work, we could show that the majorization
method for the optimization of the joint objective function
converges to a fixed point or gets as close as possible to a
connected set of fixed points.

@ Using a constraint on the Frobenius-norm of the dictionary,
jointly with an ¢4 sparsity measure, was found to be a
better choice.
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